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Abstract. Antennular grooming behavior (AGB) is a

stereotyped behavior in crustaceans in which the first pair

of antennae, the major olfactory organs, are clasped and

wiped repetitively by the third maxillipeds, which also

serve as feeding appendages. AGB apparently functions

to clear away accumulating debris on or between the

antennular aesthetascs (olfactory sensilla). The purpose

of this research was to determine whether AGB can be

activated by chemicals commonly found in food odors.

Lobsters were presented, via headset or handheld pipette,

with 27 chemicals found in their food. One chemical, L-

glutamate, evoked very high frequencies of wiping. Most

chemicals tested were not stimulatory and only a few

were weakly stimulatory (adenosine-5'-monophosphate.

glycine, D-glutamate). This is surprising because previous

studies have shown that other behaviors (antennular flick,

search) can be evoked by a much broader array of chemi-

cals found in food odorants. On the basis of these results,

we propose that chemosensory neurons that specifically

detect L-Glu activate AGB through a recently described

non-olfactory pathway. Furthermore, we propose that the

role of L-Glu in evoking AGBis based on its electrostatic

properties. Because it has a high probability of electro-
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L-Glu), glycine (Gly), L-histidine (L-His), L-hydroxyproline (L-Hyp), L-

isoleucine (L-Ile), L-lactate (L-Lac), L-leucine (L-Leu), L-lysine (L-Lys),

L-methionine (L-Met), ammonium chloride (NH4 C1), N-methyl-D-aspar-

tate (NMDA). L-phenylalanine (L-Phe), L-proline (L-Pro), L-serine (L-

Ser), L-succinate (L-Suc), taurine (Tau), L-threonine (L-Thr), L-valine

(L-Val), artificial seawater (ASW).

static adherence to the antennular cuticle, L-Glu is a sensi-

tive indicator of fouling by food-associated chemicals and

thus an appropriate compound to stimulate antennular

grooming.

Introduction

Odorant access and removal from receptors are equally

important for effective chemical detection. To facilitate

these two processes, animals have evolved short- and

long-term mechanisms that include elimination of stag-

nant boundary layers, alteration and internalization of

chemostimulants, and grooming of chemosensory organs.

These mechanisms maintain the sensitivity of the receptor

cell and. in the case of grooming, the structural integrity

of the chemosensory organ.

Crustaceans are good models in which to investigate

chemoreception because they respond to chemostimulants

with highly stereotypical and quantifiable behaviors.

Chemical cues regulate many components of crustacean

behavior including food recognition (Hazlett, 1968; Carr,

1978; Carr, 1982; Schembri, 1981; Fine-Levy et al.,

1988), courtship behavior (Atema and Engstrom, 1971;

Dunham, 1978; Atema et al., 1979; Gleeson, 1980), and

predator avoidance (Mackie and Grant, 1974).

Electrophysiological recordings of receptor neurons

(e.g., Derby and Ache, 1984; Anderson and Ache, 1985)

and behavioral studies employing ablation techniques

(Derby and Atema. 1982; Fine-Levy et al., 1988; Daniel

and Derby, 1991) have shown that antennules are the

primary organs for detecting odors. Therefore, mecha-

nisms that enhance odorant access to and removal from

the perireceptor environment of the antennules are essen-

tial to crustacean behavior. Such mechanisms include

antennular flicking (Snow, 1973; Gleeson et al., 1993),
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biochemical removal of stimuli (Gleeson et ul., 1987; Carr

et ul., 1989), and antennular grooming (Bauer, 1989).

Antennular flicking, which occurs at frequencies of 0.5

to 2 Hz in Punulirus argus (Schmitt and Ache, 1979). is

defined as the vertical deflection of the lateral filament to

a position nearly contacting the medial filament (Zimmer-

Faust et ai, 1984). Antennular flicking reduces the stag-

nant boundary layers of seawater created by the dense

tufts of aesthetascs (Snow, 1973; Gleeson et ai, 1993)

which are the sensilla housing the dendritic processes of

hundreds of olfactory receptor neurons (ORNs) (Griinert

and Ache, 1988). This removal mechanism uses move-

ments of the antennules to splay apart the aesthetasc hairs,

allowing water to rush in and displace the water collected

during the previous flick. Flicking is analogous to a verte-

brate sniff (Schmitt and Ache, 1979) because sniffing

flushes air from the upper nasal cavity, the location of

the olfactory epithelium. In P. argus, flicking is activated

in a dose-dependent manner by a broad range of chemical

stimuli detected by the antennules (Daniel and Derby,

1991).

The aesthetascs of P. argus contain membrane-bound

enzymes and transporters that serve to eliminate specific

chemical stimuli including nucleotides and amino acids

(Trapido-Rosenthal et al. 1988; Carr et al.. 1989). Ecto-

nucleotidases catalyze the dephosphorylation of adenine

nucleotides, creating an odorant different from the one that

initially entered the receptor environment. The end product

of dephosphorylation, adenosine, a molecule for which

there is little receptor sensitivity, is internalized by a spe-

cific uptake system (Trapido-Rosenthal et ai. 1987). In

addition to the adenosine uptake system, an uptake system

for taurine has been identified (Gleeson et ai, 1987) and

uptake systems for other amino acids, including L-gluta-

mate, also exist (Trapido-Rosenthal et ai, 1988; Carr et

ul., 1989). Prolonged stimulation of ORNs limits the tem-

poral and spatial resolution of "patchy" olfactory environ-

ments (Atema et al., 1989). Quick elimination of odorants

by these biochemical removal mechanisms as well as by
antennular flicking enhances receptor sensitivity.

The least studied mechanism for facilitating odorant

removal and maintaining receptor accessibility is anten-

nular grooming behavior (AGB). Although AGB is com-

mon in many crustaceans, very little is known about

which stimuli activate it (Bauer, 1989). This behavior

consists of an antennular deflection downward, permitting

the lateral and medial antennular filaments to be grasped

by the third maxillipeds (paired appendages on either side

of the mouth) and pulled repeatedly through the setal

combs of the maxillipeds. The resulting action facilitates

removal of material that has accumulated on or between

the aesthetascs (Snow, 1973; Bauer, 1989). Fouling is a

recurring problem for crustaceans because both the exo-

skeleton and specialized structures such as gills and anten-

nules are favorable substrates for microbes and detritus.

If this material is not removed, chitinivorous microorgan-

isms can damage the exoskeleton and the presence of

other fouling organisms can cause respiratory and sensory

impairment. When a shrimp, Heptacarpus pictus, was

experimentally prevented from grooming the antennules,

extensive structural damage of the aesthetascs occurred

(Bauer. 1977). Therefore, anything that enhances the level

of microbial fouling is detrimental to the structural integ-

rity of the antennule and, presumably, to its functional

role as a chemoreceptor organ.

Although fouling of the antennules occurs continually,

feeding may result in particularly high rates of accumula-

tion of debris. By providing a nutrient-rich substrate, this

debris facilitates microbial colonization. Results of stud-

ies of several crustacean species show that AGB can be

elicited in response to compounds typically found in food

(Snow, 1973; Zimmer-Faust et ai, 1984). In this paper,

we examine which chemicals found in the food of P.

argus stimulate the release of AGB. Compounds found

in food, including amino acids, nucleotides, organic acids

and ammonium (Carr and Derby, 1986) were tested. Re-

sults of behavioral assays revealed that only one amino

acid, L-glutamate (L-Glu), evoked AGB with great fre-

quency. Even analogues of L-Glu (D-glutamate, L-aspar-

tate, N-methyl-D-aspartate) were not excitatory. On the

basis of these results, we propose that chemosensory neu-

rons that specifically detect L-Glu activate AGB through

a recently described non-olfactory pathway (Schmidt et

ai, 1992; Schmidt and Ache. 1996). Furthermore, we

propose that L-Glu evokes AGBbecause the high proba-

bility of electrostatic adherence to the antennular cuticle

makes it a sensitive indicator of fouling by food-associ-

ated chemicals.

Materials and Methods

Source and maintenance of lobsters

Spiny lobsters (55 to 70 mmcarapace length) were

obtained from the Florida Keys Regional Marine Labora-

tory in Long Key. Florida, and maintained in separate

80-1 aquaria (one lobster/aquarium). Aquaria were lined

with crushed coral; filled with aerated, recirculating In-

stant Ocean (specific gravity, 1.021- 1.023); and equipped

with gravel-bottom filter systems. Lobsters were fed scal-

lop or shrimp daily ad libitum and the uneaten food was

removed after 1 h. The light:dark cycle was 12:12 and

the ambient temperature was maintained between 25-
27C. Red light (25 W, ceramic-coated light bulbs) was

provided during the dark cycle.

Chemical Stimuli

The following compounds were used as stimuli: adeno-

sine-5'-monophosphate (AMP), D- & L-alanine (D- & L-
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Ala), L-arginine (L-Arg), L-asparagine (L-Asn), i.-aspartate

(L-Asp), betaine (Bet), D- & L-glutamate (D- & L-Glu),

glycine (Gly). L-histidine (L-His), L-hydroxyproline (L-

Hyp), L-isoleucine (L-Ile). L-lactate (L-Lac), L-leucine (L-

Leu), L-lysine (L-Lys), L-methionine (L-Met), ammonium

chloride (NH 4C1), N-methyl-D-aspartate (NMDA), L-phe-

nylalanine (L-Phe), L-proline (L-Pro), L-serine (L-Ser), L-

succinate (L-Suc), taurine (Tau), L-threonine (L-Thr) and

L-valine (L-Val). Stock solutions (lOmM. pH 8.1) of all

the stimuli were prepared in artificial seawater (ASW)

(Cavanaugh, 1964). L-cysteine (L-Cys) was prepared on

the day of testing to prevent precipitation from freezing;

all others were stored at -70C until used. With the excep-

tion of D-Ala, D-Glu (a stereoisomer of Glu). NH4 C1. and

NMDA(an agonist of a subclass of glutamate receptors

(Schoepp, 1994)), these compounds were identified by Carr

and Derby (1986) as components of prey extracts. On the

day of testing, appropriate stock solutions were thawed and

diluted to either 5 mMor 0.5 mMwith ASW.

Experimental design

The 26 compounds listed above were each assayed at

0.5 mM. To ensure that the lobsters would not become

desensitized, we presented these chemicals in five sepa-

rate trials (maximum of 10 chemicals per trial including

ASW& L-Glu) so that no experiment lasted longer than

4 h. We subsequently tested 10 of these compounds (in

three separate trials) at 5.0 mM. In previous trials, these

10 chemicals had elicited either a highly significant re-

sponse (i.e., one that was significantly greater than the

response toward ASW) or the response was greater than

the response toward ASWfor a majority of lobsters. The

exception was NMDA, which was assayed at both con-

centrations even though it failed to meet the criteria. Fi-

nally, a series of concentrations of L-Glu (0.01, 0.05, 0.08,

and 0.1 mM) and three other compounds (AMP, Gly, D-

Glu at 0.5, 1.0, 5.0 and 10.0 mM) shown to elicit signifi-

cant responses at 5.0 mMwere tested. Each of the four

compounds was assayed in a separate trial. All trials in-

cluded ASWas a control stimulus and 0.5 mML-Glu,

which preliminary experiments showed to be very effec-

tive in evoking AGB, as a response standard.

Presentation of stimuli

Experimental trials were blind in that the experimenter

did not know the order in which the chemicals were pre-

sented. Each stimulus was administered to six lobsters,

except where noted in Results, in triplicate tests. Two
methods of stimulus presentation were employed: auto-

mated and handheld pipette. For the first two trials using

stimuli at 0.5 mM, presentation of stimuli was automated

via a headset apparatus as described previously in Daniel

and Derby (1988). A 13-mm diameter acrylic rod was

attached by hook and loop fasteners to the rostrum. A
bent glass rod (5-mm diameter) was glued to the rostrum

attachment with cyanoacrylate quick-bonding nontoxic

glue. This provided support for the tubing through which

the stimulus was introduced (1-mm inner diameter,

attached to the rod with cable ties) and allowed test solu-

tions to be injected at a constant distance in the vicinity

of the antennules. A peristaltic pump was used to deliver

all solutions. To desensitize the animals to the mechanical

stimulus, tank water was pumped continuously, via plastic

flexible tubing, from the tank through the stimulus-intro-

duction tubing. Each test solution (5-ml in a 10-ml plastic

syringe) was injected into the tubing through a two-way

stopcock valve. The flow rate of the pump was maintained

at 10-ml min~'. In subsequent trials, stimuli were pre-

sented via a handheld 5-ml pipette. The tip of the pipette

was gently placed in the vicinity of the antennules. This

method appeared to elicit a consistently greater magnitude

of AGB from the lobster (Fig. 1). All trials were video-

taped, beginning 0.25 min before each stimulus was pre-

sented and continuing for up to 2 min afterward.

Data analysis

The magnitudes of the AGB responses in all experi-

ments were determined from videotapes. Pre-stimulus

wipe rates were determined by counting the number of

wipes that occurred in the 0.25-min period before stimu-

lus presentation. Post-stimulus wipe rates were deter-

mined by recording the number of wipes that occurred

for 1 min after stimulus presentation. Wipe rates were

therefore defined as the post-stimulus response rate minus

the pre-stimulus response rate. The three wipe rates

(wipes- min ') counted for each stimulus per trial were

averaged and reported as the mean wipe rate.

In most cases, data did not meet the assumptions neces-

sary for parametric statistical tests; therefore, nonparamet-

ric tests were used. Friedman's repeated measures tests on

ranks was used to compare responses to chemical stimuli

(Sigmastat, Jandel Scientific). Where statistically signifi-

cant differences were found, pairwise comparisons were

performed using the Student-Newman-Keuls (S-N-K) test

adapted for ranked data. For the concentration series ex-

periments, least-squares regression analyses were per-

formed on log-transformed concentrations of each stimu-

lus vs. wipe rates standardized to the L-Glu (0.5 mM)

response.

Results

Responses to compounds at 0.5 mM

Of the compounds presented at 0.5 mM, L-Glu was by

far the most effective compound at eliciting AGB. In trials

#l-#4, reported in Figure 1, L-Glu produced significantly
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higher wipe rates than all other stimuli tested at 0.5 mM
and ASW(Fig 1; Friedman repeated measures ANOVA;
trial #1. x'

= 29.7, = 9, P = 0.0001; trial #2. r
34.6. = 9, P = 0.0001; trial #3, \

2 = 24.4, n = 6, P
= 0.0002; trial #4. x~ = 23.1, n = 6, P = 0.006; S-N-K

pairwise comparisons test for ranked data, P < 0.05).

Two compounds, Gly and L-Met (trial #3), elicited re-

sponses that were significantly greater than ASW(S-N-

K pairwise comparisons test for ranked data, P < 0.05).

Neither the stereoisomer of L-Glu. D-Glu, nor the ana-

logue, L-Asp (sidechain has one less carbon), elicited re-

sponses greater than those toward ASWin trial #3 (S-N-

K pairwise comparisons test for ranked data. P > 0.05).

In addition, NMDAdid not elicit significant responses

(trial #5, \~ = 4.91, H = 3, P = 0.194). However, none

of the compounds tested in this trial, including L-Glu,

were significantly different from ASW. This is probably
because the small sample size used in this experiment
resulted in a very low-power test. However, all three lob-

sters tested responded much more to L-Glu than to ASW
or NMDAat 0.5 mM.

Responses to compounds at 5 mM

Responses to L-Glu at 0.5 mMwere significantly higher
than responses to test stimuli when presented at 5.0 mM
(Fig. 2; Friedman's repeated measures ANOVA; trial #1,

X
2 = 43.1, n = 9. P = 0.0001; trial #2, x

2 = 24.7, n =

6, P = 0.0002; trial #3, x
2

= 10.4. n = 6, P = 0.0055;

S-N-K pairwise comparisons test for ranked data, P <
0.05). Six compounds, L-Asn, L-Cys, AMP. and Tau in

trial #1, Gly and D-Glu in trial #2, evoked wipe rates

significantly greater than those for ASW(S-N-K pairwise

comparisons test for ranked data, P < 0.05). NMDA
produced no significant response at 5.0 mM(trial #3, S-

N-K pairwise comparisons test for ranked data, P > 0.05).

Responses to concentration series

The magnitude of AGB towards L-Glu increased as a

linear function of the log of its concentration (Fig. 3.

least-squares regression, F = 86.6, n = 30, P < 0.001.

r = 0.76, standardized wipes -min"' = 107.7 +

(53.1 log[concentration]) and were at least 100 times

more effective than any of the other chemicals across the

range of concentrations tested. Only the AMPconcentra-

tion series yielded a significant regression (least-squares

regression, F = 22.6, n = 26, P < 0.0001, r = 0.55,

standardized wipes -min~' = 7.26 + (39.5 log[concen-

tration]). From the linear regression equations, the con-

centrations needed to achieve 25% and 50% maximal

responses were 0.03 and 0.08 mM, respectively, for L-

Glu. and 3.0 and 14 mM, respectively, for AMP. Although
the linear regression equations for Gly and D-Glu were not

significant, the 50% maximal responses based on visual

inspection were at least 10 mM.

Discussion

AGBspecificity to L-gliitamate: implications for

sen.soiy-motor integration

Our results show that, unlike other behaviors studied

in P. argus (Fine-Levy et al.. 1988. 1989; Daniel and

Derby. 1988; Fine-Levy and Derby, 1991, 1992; Lynn et

al.. 1994), AGB is elicited almost exclusively by one

chemical, the L-enantiomer of glutamate (L-Glu). L-Glu

was at least 100 times more effective in eliciting AGB
than were AMP, Gly, and D-Glu, the next-best single

stimuli. Furthermore, the D-enantiomer of L-Glu (D-Glu).

a structural analogue of L-Glu (L-Asp), and an agonist of

a major class of glutamate receptors (NMDA). either

failed to activate AGB (L-Asp, NMDA) or were only

weakly effective at high concentrations (D-Glu). Wepro-

pose that elicitation of AGB requires sensory input from

a specific class of chemosensory neurons narrowly tuned

to L-Glu.

According to electrophysiological studies. ORNs in P.

argus are narrowly tuned to specific chemical stimuli and

can be classified by best-compound. "Best" cells have

been identified for AMP, ATP, Cys. Bet, Glu, NH4C1,

and Tau (Derby and Ache, 1984; Carr et al., 1986; Derby
etal., 1991; Daniel et al., 1994). Similar tuning character-

istics have been identified for olfactory and non-olfactory

chemosensitive neurons distributed on second antennae,

antennules. maxillipeds, and legs of Homarus americanus

(Johnson et al., 1985; Tierney et al.. 1988; Corotto et al.,

1992; Voigt et al., 1997). Biochemical receptor-binding

assays of antennules of P. argus have identified indepen-
dent olfactory receptor sites for AMP, Tau (Olson et al.,

1992; Olson and Derby, 1995; Sung et al., 1996), both

stereoisomers of Ala (Michel et al.. 1993), and L-Glu

(Burgess et al., 1994).

Compounds that weakly evoke AGB may do so by

activating L-Glu-best neurons. Electrophysiological stud-

ies of ORNs showed that responses to next-best stimuli

were generally 100-fold less than to the best compound
(Daniel et al., 1994). Hence the amino acids Gly and D-

Glu, and the nucleotide, AMP, are possibly "next-best"

stimulants that weakly activate AGBvia L-Glu-best cells.

However, the response spectra of AGB and of ORNs
sensitive to L-Glu are not entirely consistent. NMDAand

L-Cys serve as partial agonists and antagonists for chemo-

receptors presumed to be ORNs sensitive to glutamate

(Burgess and Derby. 1995). Since AGB was elicited by
L-Glu but not NMDAor L-Cys even at 5 mM, it is possible

that non-olfactory neurons mediate AGB.
Howmight such a specific stimulus lead to activation of

AGB?There appear to be two antennular chemosensory
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ing lobsters. We thank the three anonymous reviewers

for their critique of the manuscript. Research described

represents partial fulfillment of requirements for the de-

gree of Master of Arts.
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